If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-14y+1=0
a = 2; b = -14; c = +1;
Δ = b2-4ac
Δ = -142-4·2·1
Δ = 188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{188}=\sqrt{4*47}=\sqrt{4}*\sqrt{47}=2\sqrt{47}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{47}}{2*2}=\frac{14-2\sqrt{47}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{47}}{2*2}=\frac{14+2\sqrt{47}}{4} $
| 2x-3+4x·5=4·(2x-8x) | | 3.6x-36=2.4x+6 | | 2(z+5)+4=43 | | 120+.3x=30+.6x | | 15x-2=9x+10 | | 3(x+2’1)=12 | | h/0.4-3.2=-6.8 | | 2(2x-3)=3(x+2) | | x=150000+0.05x | | -5.8+2.5w=7.35 | | 7x/6-2.5=0 | | x(x=8)=128 | | 8d=300 | | 5x+15-30=x^2-9 | | m/5-6=-8 | | 4+x/7=7 | | 15+5y=-2y+1 | | 5x^2+43=(x–1)(5x+6) | | 5+-6x=23 | | 10x-9=40x+3 | | -8a+11=-7-2a | | -16t^2-5t+100=0 | | -5(3x+1)+4x=72 | | 7x-13=16x-38/2 | | 1/6+2y=5/6 | | f÷3.6=17 | | -1n+1=11n | | 2m+7=6m-9 | | 3600/x=3,3 | | 33+6x=15x-3 | | (2/3)a=5.9 | | X=13+-1.5y |